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Quantum dispersion and its exponential growth of a wave packet in chaotic systems
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The quantum correspondence of one particular signature of classical chaos—the exponential instability of
motion—can be characterized by the initial exponential growth rate of the spreading of the propagating
guantum wave packet. The growth rate is approximately twice the classical maximum Lyapunov exponent of
the system. In the regular case, the dispersion of the wave packet is only due to the usual quantum effect that
should vanish in the classical limit. In contrast, in the chaotic case, the evolution behavior of the wave packet
is due to the dynamical effect associated with the nonlinearity and persists as long as the spatial extension of
the initial wave packet is kept finite.
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The propagation of quantum wave packets under the ac-
tion of a Hamiltonian that shows classically soft chaotic be- PE(X)=f Sy)p(y—x)dy (]
havior, meaning that the classical phase space has regular
and chaotic regions, is of interest as it sheds light on theo obtainS(p,). In Ref.[9] it is shown that
guantum-classical correspondence of one characteristic phe-
nomenon in chaotic systems—the exponential instability of AS=S(p.)—S(p)=0. ()]
motion[1-7]. In a former studyf 7] a one to one correspon- ) ) ]
dence has been found between the initial growth rate of thdhe heterogeneity of phase space is defined by
spreading width of the quantum wave pack8WWWP and AS
the corresponding classical trajectories. In the present paper h(p)= lim—. (%)
we further substantiate these studies using a coherent wave e—0 €
packet in the harmonic oscillator as initial state. We find that
the SWWP initially increases with time exponentially if the This quantity has an exponential growth rate related to the
mean values of coordinate and momentum of the wavenaximal Lyapunov exponent. In fact, from Ed.2) and Eq.
packet start from a point where the corresponding classicdll3) of Ref.[9] it can be concluded that

trajectory is chaotic. Otherwise the increase with time is lin- 1

ear. By construction, without perturbation the SWWP is con- l -

' im=-Inh(p(t))=A, 5
stant. It does spread when perturbed, no matter how small 2t (1)) ©
the perturbation so that it always attains its steady state if
given sufficient time. whereA is the maximum Lyapunov exponent with the maxi-

Toda and Ikedd8] proposed a quantal Lyapunov expo- mum taken over the domain of phase space of the corre-
nent, which tends asymptotically towards the maximalsponding classical system that is associated yft).
Lyapunov exponent in the classical limit. In a different ap-  For a single particle wave function witN degrees of
proach GU9] starts from nonequilibrium ensembles and as-freedom the heterogeneity turns out to[18¢
sociates the phase space distributional heterogeneity of non-
equilibrium ensembles with the maximal Lyapunov 2 N
exponent. Both attribute a quantitative measure to the h(p(t))=— > [(Ag)?+(Ap)2], (6)

. . . he =1
spreading character of the wave packet that is briefly reca-

pitulated next. ; _
We begin with the entropy for the densipy=||? for a where, with(y{y)=1,

wave functiony, viz., (Aq)2=(y|q?| ) —(yla| )2

S(p)=—In(Tr|p|?). (1)  and similar forp. It is argued in Ref{9] that this quantity has
an upper bound determined by the uncertainty relation, i.e.,
Note that the trace is taken over all variables implying an/h(p)|<4L?#%? wherel =max(q,Ap), the maximum of the
integration over space. Thus the entrdpys rather a func- spreading in position and momentum. This implies that the
tional of p. Using a suitable coarse graining functiop(x) exponential growth stated in E¢p) can apply only for some
which, for e—0, yields the Diracs function we smear out initial time until the saturation U2/%2 has been attained.
the density by Equations (4)—(6) establish a remarkable connection be-
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tween classical and quantum mechanical behavior of chaotic 4

systems. The very notion of the Lyapunov exponent being a 3

classical quantity has been related to the growth in time of e 2

the quantum mechanical uncertainty. To elucidate this point S Tt

further we investigate in the following the dynamical prob- 0

lem, i.e.,h(p(t)), in a particular single particle two degrees 3

of freedom system that has been dealt with classically and 2

guantum mechanically as a stationary problem befafs. 1

Particular emphasis is put upon the analogy between classi- 0 50 40 60 80 20 40 60 80 100

cal and quantum mechanical behavior for systems with soft t t

chaos, where depending on the initial conditions in phase ) _ )
space a classical orbit can be regular=0) or chaotic FIG. 1. The evolutlon_ of the logarithm of the totgl uncertalnt_y
(A>0). measure of the propagating wave packet. Here and in the following

figures the time units are determined by the inverse frequency used

We consider the Hamiltonian . ) g .
for the harmonic oscillator. For the choice of parameters see main

H=Ho+AV, text.

52 1 5 Here the exact energiés,(\) and eigenfunctionsyr,(\))
Ho=— — (A, + A )+ —me?| x2+ — |, are obtained numerically by diagonalization in the unper-
0= " gm(&xFAJ T gMe (X bz) turbed basignyn,). The diagonalization yields the matrix
elements

1 ,27°-3z¢ Corn = (V)] 10
V(X,2)= = Mw? (7) m,anZ_<‘/’m( )[nenz). (10

RN

Note that the octupole term breaks the reflection symmetry
The two-dimensional harmonic oscillatbiy, is perturbed by z— —z of the unperturbed Hamiltonian while the corre-
V(x,z), an octupole deformation with the deformation sponding symmetry inx still prevails. Consequently, the
strength\. Note that bothH, andH, are invariant under problem of diagonalization reduces into two orthogonal set-
rotations about the axis. For any giverb, there exists a tings, one with even and one with odg. However, in Eqg.
critical value\ ., such that foin >\ the potential no longer (8) even and odd values af, occur. As an example of the
binds. Forb=0.5, A\;=1.64. In this paper we always take time dependent matrix elements needed in the following we
b=0.5. Varying\ from zero to\., the motion of the clas- give the expression fafx?); which reads
sical particle changes from regular to fully chaotic where no
regular region is left in phase spa@ze[10,11)). The eigen- 2 _ * .
functions of H, are used as a basis, we denote them by<a(t)|x |a(t)>_r§n, D X m Doy X =1 (Em = B JUA],
[nyn,). We assume the system to be initially in a coherent ' (11
state of the axial symmetric harmonic oscillator. Fixing the
mean values of position and momentum in four-dimensional D)\
phase space and denoting them X pyo.Z0.P,0, respec- Xinmr = 2 , Crnnen (M| X |anZ>Cn)’<n£,m”
tively, this state is given by XNz

l j—
| @)= EX[{ - §(|ax|2+ |a|?) Dm= z Cm,nxnz<nxnz| ap).
Z & (a)™(ay)"™ The quantity of interest

X 2

—F—|NyNy),
2020 gy M

wherea,=Xg+ipyg, a,=Zy+ip,o thus determining the ini-
tial wave packet in four-dimensional phase space. The initiag&an now easily be calculated.
coherent state evolves under the actionHof The wave
packet becomes at later times

8
2
h(a(t))= [(Ax)*+(A2)°+(Ap®+(Ap)?] (12

The time evolution of the logarithm of this quantum het-
erogeneity is shown in Fig. 1 using the coherent state(&q.
as initial state. Note that for this staté«(t)) remains con-
| arg), (9)  stantintime forx=0. The left column of the figure displays
purely regular(top) and purely chaotiqbotton) behavior
irrespective of the initial condition as the respective values

|a()\,t))=exr{ - i%H()\)t

where for A=0.1 and\ =0.95 give rise to pure regular and pure
i i chaotic phase space, respectively. The initial coherent state in
__ - _ the left column islas) ={x,py;z,p,} ={0.0,3.78,2.0,00 In
ex HMt|= \))ex En(Mt N 3 X z
F{ h ) } % (M) F{ h (M) }(‘ﬂm( ) contrast, the right hand column represents results for an in-
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FIG. 2. The maximum Lyapunov exponent as a function of the Qn'
deformation strengti/\.. < 4l
termediate value ok =0.5 where the phase space is mixed. 0 20 40 60 8 100
Here, similar to classical trajectories, the qualitative behavior t
of the wave packet depends critically on the initial condition.
The initial coherent state in the upper right columr|ds) FIG. 4. AC, andAC,, for a regular caseN/A.=0.1) and for

={X,py;2,p,}=1{0.0,3.78,0.0,0) classically the motion is different effective Planck’s constant.
regular. The initial coherent state in the lower right column is
lay)=1{x,py;z,p,}=1{2.83,1.89,0.0; 4.62, classically the with #—0. As this is a quantity with dimensions we rather
motion is chaotic. When starting in a regular region theprefer to rewrite the Hamiltonian in dimensionless quantities
spreading of the wave packibp right is virtually as one of  [13,14. Therefore the unperturbed Hamiltonian
the plain regular case for a smalber(top lef). The apparent
striking difference, i.e., the_ beat obser\_/eq for0.1 is in Hozi 2 p,2+ Emwz 2 q-2
this context of secondary importance; it is due to the very 2m Sy 2 12
small deviations from the harmonic spectrum occurring for
small perturbation and giving rise to very small frequencyWith [a;,p;]=i% is transformed into
contributions in Eq(11).

In.Fig. 2 the maximum Lyapunqv exponent is shown as a Ho=1 2 (pj2+qu) (13)
function of the octupole deformation strengtii\ . for the 252
corresponding classical system; fara.=0.95 it is about
0.42. The exponential growth rate bft) during expansion by dividing p;, g;, andt by Vmawofi, (wo/w) (/M)
time[12] is shown in Fig. 3 fol/\,=0.95 and indicated by and (wo/®)(1/w,), respectively. Areference frequenay is
the curved line. The straight line is a best fit to the curve. Theised for dimensional reasons. In these new units it is
exponential growth rate is about 0.9, which is about twiceldj,Pj]=i(w/we)=iQ. Here() plays the role of an effec-
the classical maximum Lyapunov exponent of the Systerﬁive Planck constant. Its variation Corresponds to a Change of
and thus agrees with the above theory. the size of the system as the spatial extension of the oscilla-

Next we address the question about the classical limit thafor is determined byo. Thus when()—0, the system tends
is of interest since spreading of the wave function is a puréOW&l’dS the classical limit. The limit is associated with either
quantum mechanical phenomenon while chaos is strictly dethe large time limit or a large sized system or a combination
fined only in classical terms. The classical limit is associatecf both. The total Hamiltonian reads

- T He L g pzaws Zan 2328 14
3.0:- 1 _E pX pZ X E X2+22 ( )

We define the difference

ACQ:<Q>coh_<Q>cla5a (15

where (Q)., denotes the expectation value of an arbitrary
phase space coordinate whi{®).,s is the corresponding
classical trajectory value for the same initial condition. In
Figs. 4 and 5 the time evolution of this difference is shown
i for Q=z and Q= p, for different effective Planck constant.
00 o5 10 15 20 The fine line represents the quantum mechanical céke (
=1) while the thick line (=0.5) is closer to the classical
limit and gives an indication about the trend towards the
FIG. 3. The evolution of the logarithm of the total uncertainty classical limit; we note that the limit itself cannot be attained
measurement of the propagating wave packet and a linear best fiby numerical means, in fact it is a nonuniform limit.

Inh
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——— the nonuniform nature of the classical limit. In fact, the clas-
—uio sical limit of the evolution operator exp{Ht/4) is ill de-
fined for a chaotic Hamiltonian: the limit attained depends on
the specific way in which it is taken. The limit taken in the
present paper corresponds to the limit of large time and/or
large spatial extension before the linkit=0 is taken. As a
. . . consequence, quantum mechanical behavior prevails eventu-
al —eto ally as long as the effectivk is finite. To phrase it in differ-
ent words: as long as we keep the spatial extension of the
initial wave packet finite, it will spread exponentially under
the regime of a chaotic Hamiltonian and the mean values do
not uniformly approach the classical values.
In summary, the propagation of the quantum wave packet
-60 20 40 60 80 100 in the perturbed Hamiltonian system manifests the corre-
spondence of the specific signature of classical chaos—the
t exponential instability of motion. Furthermore, the exponen-
FIG. 5. Same as Fig. 4, but for a chaotic casé\,=0.8). tial growth rate qf the_ SWWP, from which the growth rate of
the total uncertainty is calculated (in has been established
We recall that, forx=0, (i) the coherent state does not © be approximately twice the classicall maximum Lyapunov
spread andii) the expectation values for position and mo- &xPonent of the system. The very notion “quantum chaos”
mentum follow strictly the classical trajectories. In Fig. 4 we féceives from the study of the time behavior of wave func-
display the differenced C, and ACpZ for A\=0.1. As ex- tions a much clearer defined concept than in stationary prob-

pected, now the differences are finite, and they decrease wi{ﬁms' The expongntlal b_ehawo_r, ur_lknown In stationary quan-
decrea’sing effective Planck constant" if the classical limit is— " prqblems, 'S retfleved in time dependent_ quantum
attained. the differences would vaniérh’)tshown in figures mechanics and_unequwocally related to the nonllnear char-
Ina regL,JIar system the classical limit is attained smoothly inacter of the motion. In the regular case, the dispersion of the

wave packet is only due to the usual quantum effect that

:?;;g:grfgsrrﬁlsep?nnodrg%gzgleCiﬁgosnngllgﬁggllgf\pé zTiiglgT:r']%%hould vanish in the classical limit. In contrast, in the chaotic
coilstant Also in this case ythe spreading of the wave funcceSe’ the evolution behavior of the wave packet is due to the
: ' P 9 dynamical effect associated with the nonlinearity and persists

tion is linear in tlme.and is a typical "’!”d pure_quant(nm as long as the spatial extension of the initial wave packet is
rather wave mechanical phenomenon irrespective of the dy-kept finite

namics as long as the system evolves under a regular regime:
In contrast, the differences do not vanish in this limit as The work was supported by the National Natural Science
illustrated in Fig. 5 where the motion of the chaotic systemFoundation of ChinaGrant No. 10175082 CAS knowledge
(A=0.8) is depicted. For chaotic dynamics, not only is thelnnovation Project No. KJCX2-SW-N02, Major State Basic
spreading of the wave function exponential but also theResearch Development Progrd@rant No. G2000077400
guantum mechanical mean values do not approach the valuesd the One Hundred Person Project of the Chinese Acad-
of the classical trajectories. Here we see a demonstration @&my of Sciences.
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