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Quantum dispersion and its exponential growth of a wave packet in chaotic systems
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The quantum correspondence of one particular signature of classical chaos—the exponential instability of
motion—can be characterized by the initial exponential growth rate of the spreading of the propagating
quantum wave packet. The growth rate is approximately twice the classical maximum Lyapunov exponent of
the system. In the regular case, the dispersion of the wave packet is only due to the usual quantum effect that
should vanish in the classical limit. In contrast, in the chaotic case, the evolution behavior of the wave packet
is due to the dynamical effect associated with the nonlinearity and persists as long as the spatial extension of
the initial wave packet is kept finite.
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The propagation of quantum wave packets under the
tion of a Hamiltonian that shows classically soft chaotic b
havior, meaning that the classical phase space has re
and chaotic regions, is of interest as it sheds light on
quantum-classical correspondence of one characteristic
nomenon in chaotic systems—the exponential instability
motion @1–7#. In a former study@7# a one to one correspon
dence has been found between the initial growth rate of
spreading width of the quantum wave packet~SWWP! and
the corresponding classical trajectories. In the present p
we further substantiate these studies using a coherent w
packet in the harmonic oscillator as initial state. We find t
the SWWP initially increases with time exponentially if th
mean values of coordinate and momentum of the w
packet start from a point where the corresponding class
trajectory is chaotic. Otherwise the increase with time is l
ear. By construction, without perturbation the SWWP is co
stant. It does spread when perturbed, no matter how s
the perturbation so that it always attains its steady stat
given sufficient time.

Toda and Ikeda@8# proposed a quantal Lyapunov exp
nent, which tends asymptotically towards the maxim
Lyapunov exponent in the classical limit. In a different a
proach Gu@9# starts from nonequilibrium ensembles and a
sociates the phase space distributional heterogeneity of
equilibrium ensembles with the maximal Lyapuno
exponent. Both attribute a quantitative measure to
spreading character of the wave packet that is briefly re
pitulated next.

We begin with the entropy for the densityr5ucu2 for a
wave functionc, viz.,

S~r!52 ln~Truru2!. ~1!

Note that the trace is taken over all variables implying
integration over space. Thus the entropyS is rather a func-
tional of r. Using a suitable coarse graining functionde(x)
which, for e→0, yields the Diracd function we smear ou
the density by
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re~x!5E de~y!r~y2x!dy ~2!

to obtainS(re). In Ref. @9# it is shown that

DS5S~re!2S~r!>0. ~3!

The heterogeneity of phase space is defined by

h~r!5 lim
e→0

DS

e
. ~4!

This quantity has an exponential growth rate related to
maximal Lyapunov exponent. In fact, from Eq.~12! and Eq.
~13! of Ref. @9# it can be concluded that

lim
t→`

1

2t
ln h„r~ t !…5L, ~5!

whereL is the maximum Lyapunov exponent with the max
mum taken over the domain of phase space of the co
sponding classical system that is associated withr(t).

For a single particle wave function withN degrees of
freedom the heterogeneity turns out to be@9#

h„r~ t !…5
2

\2 (
j 51

N

@~Dqj !
21~Dpj !

2#, ~6!

where, with^cuc&51,

~Dq!25^cuq2uc&2^cuquc&2

and similar forp. It is argued in Ref.@9# that this quantity has
an upper bound determined by the uncertainty relation,
uh(r)u<4L2/\2 whereL5max(Dq,Dp), the maximum of the
spreading in position and momentum. This implies that
exponential growth stated in Eq.~5! can apply only for some
initial time until the saturation 4L2/\2 has been attained
Equations ~4!–~6! establish a remarkable connection b
©2002 The American Physical Society03-1
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tween classical and quantum mechanical behavior of cha
systems. The very notion of the Lyapunov exponent bein
classical quantity has been related to the growth in time
the quantum mechanical uncertainty. To elucidate this p
further we investigate in the following the dynamical pro
lem, i.e.,h„r(t)…, in a particular single particle two degree
of freedom system that has been dealt with classically
quantum mechanically as a stationary problem before@10#.
Particular emphasis is put upon the analogy between cla
cal and quantum mechanical behavior for systems with
chaos, where depending on the initial conditions in ph
space a classical orbit can be regular (L50) or chaotic
(L.0).

We consider the Hamiltonian

H5H01lV,

H052
\2

2m
~Dx1Dz!1

1

2
mv2S x21

z2

b2D ,

V~x,z!5
1

2
mv2

2z323zx2

Ax21z2
. ~7!

The two-dimensional harmonic oscillatorH0 is perturbed by
V(x,z), an octupole deformation with the deformatio
strengthl. Note that both,H0 and H1, are invariant under
rotations about thez axis. For any givenb, there exists a
critical valuelc , such that forl.lc the potential no longer
binds. Forb50.5, lc51.64. In this paper we always tak
b50.5. Varyingl from zero tolc , the motion of the clas-
sical particle changes from regular to fully chaotic where
regular region is left in phase space~see@10,11#!. The eigen-
functions of H0 are used as a basis, we denote them
unx nz&. We assume the system to be initially in a coher
state of the axial symmetric harmonic oscillator. Fixing t
mean values of position and momentum in four-dimensio
phase space and denoting them byx0 ,px0 ,z0 ,pz0, respec-
tively, this state is given by

ua0&5expF2
1

2
~ uaxu21uazu2!G

3 (
nx50

`

(
nz50

`
~ax!

nx~az!
nz

Anx!nz!
unxnz&, ~8!

whereax5x01 ipx0 , az5z01 ipz0 thus determining the ini-
tial wave packet in four-dimensional phase space. The in
coherent state evolves under the action ofH. The wave
packet becomes at later times

ua~l,t !&5expF2
i

\
H~l!t G ua0&, ~9!

where

expF2
i

\
H~l!t G5(

m
ucm~l!&expF2

i

\
Em~l!t G^cm~l!u.
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Here the exact energiesEm(l) and eigenfunctionsucm(l)&
are obtained numerically by diagonalization in the unp
turbed basisunxnz&. The diagonalization yields the matri
elements

Cm,nxnz
5^cm~l!unxnz&. ~10!

Note that the octupole term breaks the reflection symme
z→2z of the unperturbed Hamiltonian while the corr
sponding symmetry inx still prevails. Consequently, the
problem of diagonalization reduces into two orthogonal s
tings, one with even and one with oddnx . However, in Eq.
~8! even and odd values ofnx occur. As an example of the
time dependent matrix elements needed in the following
give the expression for̂x2& t which reads

^a~ t !ux2ua~ t !&5 (
m,m8

Dm* Xm,m8Dm8exp@2 i ~Em2Em8!t/\#,

~11!

Xm,m85 (
nxnznx8nz8

Cm,nxnz
^nxnzux2unx8nz8&Cn

x8n
z8 ,m8

* ,

Dm5 (
nxnz

Cm,nxnz
^nxnzua0&.

The quantity of interest

h„a~ t !…5
2

\
@~Dx!21~Dz!21~Dpx!

21~Dpz!
2# ~12!

can now easily be calculated.
The time evolution of the logarithm of this quantum he

erogeneity is shown in Fig. 1 using the coherent state Eq.~8!
as initial state. Note that for this stateh„a(t)… remains con-
stant in time forl50. The left column of the figure display
purely regular~top! and purely chaotic~bottom! behavior
irrespective of the initial condition as the respective valu
for l50.1 andl50.95 give rise to pure regular and pu
chaotic phase space, respectively. The initial coherent sta
the left column isua3&5$x,px ;z,pz%5$0.0,3.78,2.0,0.0%. In
contrast, the right hand column represents results for an

FIG. 1. The evolution of the logarithm of the total uncertain
measure of the propagating wave packet. Here and in the follow
figures the time units are determined by the inverse frequency u
for the harmonic oscillator. For the choice of parameters see m
text.
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termediate value ofl50.5 where the phase space is mixe
Here, similar to classical trajectories, the qualitative behav
of the wave packet depends critically on the initial conditio
The initial coherent state in the upper right column isua1&
5$x,px ;z,pz%5$0.0,3.78,0.0,0.0%, classically the motion is
regular. The initial coherent state in the lower right column
ua2&5$x,px ;z,pz%5$2.83,1.89,0.0,24.62%, classically the
motion is chaotic. When starting in a regular region t
spreading of the wave packet~top right! is virtually as one of
the plain regular case for a smallerl ~top left!. The apparent
striking difference, i.e., the beat observed forl50.1 is in
this context of secondary importance; it is due to the v
small deviations from the harmonic spectrum occurring
small perturbation and giving rise to very small frequen
contributions in Eq.~11!.

In Fig. 2 the maximum Lyapunov exponent is shown a
function of the octupole deformation strengthl/lc for the
corresponding classical system; forl/lc50.95 it is about
0.42. The exponential growth rate ofh(t) during expansion
time @12# is shown in Fig. 3 forl/lc50.95 and indicated by
the curved line. The straight line is a best fit to the curve. T
exponential growth rate is about 0.9, which is about tw
the classical maximum Lyapunov exponent of the syst
and thus agrees with the above theory.

Next we address the question about the classical limit
is of interest since spreading of the wave function is a p
quantum mechanical phenomenon while chaos is strictly
fined only in classical terms. The classical limit is associa

FIG. 2. The maximum Lyapunov exponent as a function of
deformation strengthl/lc .

FIG. 3. The evolution of the logarithm of the total uncertain
measurement of the propagating wave packet and a linear bes
04720
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with \→0. As this is a quantity with dimensions we rath
prefer to rewrite the Hamiltonian in dimensionless quantit
@13,14#. Therefore the unperturbed Hamiltonian

H05
1

2m (
j 51,2

pj
21

1

2
mv2 (

j 51,2
qj

2

with @qj ,pj #5 i\ is transformed into

H05
1

2 (
j 51,2

~pj
21qj

2! ~13!

by dividing pj , qj , and t by Amv0\, (v0 /v)A(\/mv0)
and (v0 /v)(1/v0), respectively. A reference frequencyv0 is
used for dimensional reasons. In these new units it
@qj ,pj #5 i (v/v0)5 iV. HereV plays the role of an effec-
tive Planck constant. Its variation corresponds to a chang
the size of the system as the spatial extension of the osc
tor is determined byv. Thus whenV→0, the system tends
towards the classical limit. The limit is associated with eith
the large time limit or a large sized system or a combinat
of both. The total Hamiltonian reads

H5
1

2 S px
21pz

21x21
z2

b2
1l

2z323zx2

Ax21z2 D . ~14!

We define the difference

DCQ5^Q&coh2^Q&clas, ~15!

where ^Q&coh denotes the expectation value of an arbitra
phase space coordinate while^Q&clas is the corresponding
classical trajectory value for the same initial condition.
Figs. 4 and 5 the time evolution of this difference is show
for Q5z andQ5pz for different effective Planck constan
The fine line represents the quantum mechanical caseV
51) while the thick line (V50.5) is closer to the classica
limit and gives an indication about the trend towards t
classical limit; we note that the limit itself cannot be attain
by numerical means, in fact it is a nonuniform limit.

e

fit.

FIG. 4. DCz and DCpz
for a regular case (l/lc50.1) and for

different effective Planck’s constant.
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We recall that, forl50, ~i! the coherent state does n
spread and~ii ! the expectation values for position and m
mentum follow strictly the classical trajectories. In Fig. 4 w
display the differencesDCz and DCpz

for l50.1. As ex-
pected, now the differences are finite, and they decrease
decreasing effective Planck constant; if the classical limi
attained, the differences would vanish~not shown in figures!.
In a regular system the classical limit is attained smoothly
that the corresponding expectation values follow the class
trajectories the more closely the smaller the effective Pla
constant. Also in this case, the spreading of the wave fu
tion is linear in time and is a typical and pure quantum~or
rather wave! mechanical phenomenon irrespective of the d
namics as long as the system evolves under a regular reg
In contrast, the differences do not vanish in this limit
illustrated in Fig. 5 where the motion of the chaotic syste
(l50.8) is depicted. For chaotic dynamics, not only is t
spreading of the wave function exponential but also
quantum mechanical mean values do not approach the va
of the classical trajectories. Here we see a demonstratio

FIG. 5. Same as Fig. 4, but for a chaotic case (l/lc50.8).
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the nonuniform nature of the classical limit. In fact, the cla
sical limit of the evolution operator exp(2iHt/\) is ill de-
fined for a chaotic Hamiltonian: the limit attained depends
the specific way in which it is taken. The limit taken in th
present paper corresponds to the limit of large time and
large spatial extension before the limit\→0 is taken. As a
consequence, quantum mechanical behavior prevails eve
ally as long as the effective\ is finite. To phrase it in differ-
ent words: as long as we keep the spatial extension of
initial wave packet finite, it will spread exponentially und
the regime of a chaotic Hamiltonian and the mean values
not uniformly approach the classical values.

In summary, the propagation of the quantum wave pac
in the perturbed Hamiltonian system manifests the co
spondence of the specific signature of classical chaos—
exponential instability of motion. Furthermore, the expone
tial growth rate of the SWWP, from which the growth rate
the total uncertainty is calculated (lnh), has been establishe
to be approximately twice the classical maximum Lyapun
exponent of the system. The very notion ‘‘quantum chao
receives from the study of the time behavior of wave fun
tions a much clearer defined concept than in stationary p
lems. The exponential behavior, unknown in stationary qu
tum problems, is retrieved in time dependent quant
mechanics and unequivocally related to the nonlinear ch
acter of the motion. In the regular case, the dispersion of
wave packet is only due to the usual quantum effect t
should vanish in the classical limit. In contrast, in the chao
case, the evolution behavior of the wave packet is due to
dynamical effect associated with the nonlinearity and pers
as long as the spatial extension of the initial wave packe
kept finite.
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